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XMAE : Mean Absolute Error
Parameter tuning and machine learning are the keys to mitigating error. RAW data to feature value - e.g. vacuum equipment process
Non-linear parameter effects are common in the manufacturing industry.
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“Permutation Importance(PI)” can measure the variable importance (*2).
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gt = Quarter In addition to traditional error = Loss Function(target, model(X))
'\ method (e.g. Sp|it tESt), We choose one(a) variable, sort it randomly and get new vector(XIZ ).
we took advantage of error? = Loss Function (target, model(Xﬁ))
-Mask traceability data and Permutation Importance(a) = e;:::: If PI value is big, this variable has big effect. RO ——
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1st stage methodolo . 2nd stage methodolo : We assume that resist is scattered by
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In-Situ Inspection tool and machine learning
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In addition to traditional method,
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Our In-Situ Inspection tool “JDNP5000” (reported at PMJ2017x3) cleaning times 2 e
can judge killer defect early, and contribute to improve TAT. _
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In addition, we can narrow down the killer defect( = particle) -
We considered this case to be highly compatible with “machine plasma reflection then we got good results.
learning”. (%4)
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Conclusion ~
B Machine learning has become very familiar. However, for photomask manufacturers, especially merchant mask makers which have various
customers, to take advantage of it, DataMart build up is very important. Because each parameter affecting quality is different by POR.
B The skills related to data preparation and how to interpret the results are still left to the engineer, and that is where it gets interesting.
We are also currently working on guaranteed value prediction and equipment/process anomaly detection using machine learning. y
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